31 research outputs found

    The worldwide air transportation network: Anomalous centrality, community structure, and cities' global roles

    Full text link
    We analyze the global structure of the world-wide air transportation network, a critical infrastructure with an enormous impact on local, national, and international economies. We find that the world-wide air transportation network is a scale-free small-world network. In contrast to the prediction of scale-free network models, however, we find that the most connected cities are not necessarily the most central, resulting in anomalous values of the centrality. We demonstrate that these anomalies arise because of the multi-community structure of the network. We identify the communities in the air transportation network and show that the community structure cannot be explained solely based on geographical constraints, and that geo-political considerations have to be taken into account. We identify each city's global role based on its pattern of inter- and intra-community connections, which enables us to obtain scale-specific representations of the network.Comment: Revised versio

    Extracting the hierarchical organization of complex systems

    Full text link
    Extracting understanding from the growing ``sea'' of biological and socio-economic data is one of the most pressing scientific challenges facing us. Here, we introduce and validate an unsupervised method that is able to accurately extract the hierarchical organization of complex biological, social, and technological networks. We define an ensemble of hierarchically nested random graphs, which we use to validate the method. We then apply our method to real-world networks, including the air-transportation network, an electronic circuit, an email exchange network, and metabolic networks. We find that our method enables us to obtain an accurate multi-scale descriptions of a complex system.Comment: Figures in screen resolution. Version with full resolution figures available at http://amaral.chem-eng.northwestern.edu/Publications/Papers/sales-pardo-2007.pd

    Modularity map of the network of human cell differentiation

    Full text link
    Cell differentiation in multicellular organisms is a complex process whose mechanism can be understood by a reductionist approach, in which the individual processes that control the generation of different cell types are identified. Alternatively, a large scale approach in search of different organizational features of the growth stages promises to reveal its modular global structure with the goal of discovering previously unknown relations between cell types. Here we sort and analyze a large set of scattered data to construct the network of human cell differentiation (NHCD) based on cell types (nodes) and differentiation steps (links) from the fertilized egg to a crying baby. We discover a dynamical law of critical branching, which reveals a fractal regularity in the modular organization of the network, and allows us to observe the network at different scales. The emerging picture clearly identifies clusters of cell types following a hierarchical organization, ranging from sub-modules to super-modules of specialized tissues and organs on varying scales. This discovery will allow one to treat the development of a particular cell function in the context of the complex network of human development as a whole. Our results point to an integrated large-scale view of the network of cell types systematically revealing ties between previously unrelated domains in organ functions.Comment: 32 pages, 7 figure

    Inheritance patterns in citation networks reveal scientific memes

    Full text link
    Memes are the cultural equivalent of genes that spread across human culture by means of imitation. What makes a meme and what distinguishes it from other forms of information, however, is still poorly understood. Our analysis of memes in the scientific literature reveals that they are governed by a surprisingly simple relationship between frequency of occurrence and the degree to which they propagate along the citation graph. We propose a simple formalization of this pattern and we validate it with data from close to 50 million publication records from the Web of Science, PubMed Central, and the American Physical Society. Evaluations relying on human annotators, citation network randomizations, and comparisons with several alternative approaches confirm that our formula is accurate and effective, without a dependence on linguistic or ontological knowledge and without the application of arbitrary thresholds or filters.Comment: 8 two-column pages, 5 figures; accepted for publication in Physical Review

    Modeling the world-wide airport network

    No full text

    Indian generics producers, access to essential medicines and local production in Africa: an argument with reference to Tanzania

    No full text
    Much analysis of the supply chain for essential medicines to Africa assumes broad sustainability of low-cost generics supply from Indian manufacturers. We use Indian data and interviews to question this assumption. In a case study of Tanzania, we then argue for the necessity and feasibility of enhanced local production of essential medicines. We identify key industrial policy interventions, including industrial protection and active government purchasing; public goods including legislative and regulatory frameworks and training; and encouragement and facilitation of joint ventures. We show that a basis has been laid for these activities, and identify the urgency and difficulty of the policy challenge. There are lessons for the Tanzanian case from Indian industrial history, and policy space is provided by Tanzania's Least Developed Country status. Industrial and health policy can be further integrated to the benefit of Tanzania's citizens. The Tanzanian case has broader implications for African policymakers

    A bio-inspired approach to attack graphs analysis

    No full text
    none5noComputer security has recently become more and more important as the world economy dependency from data has kept growing. The complexity of the systems that need to be kept secure calls for new models capable of abstracting the interdependencies among heterogeneous components that cooperate at providing the desired service. A promising approach is attack graph analysis, however the manual analysis of attack graphs is tedious and error prone. In this paper we propose to apply the metabolic network model to attack graphs analysis, using three interacting bio-inspired algorithms: topological analysis, flux balance analysis, and extreme pathway analysis. A developed framework for graph building and simulations as well as an introductory use case are also outlined.noneConti V.; Ruffo S.S.; Merlo A.; Migliardi M.; Vitabile S.Conti, V.; Ruffo, S. S.; Merlo, A.; Migliardi, M.; Vitabile, S

    Social network models predict movement and connectivity in ecological landscapes

    No full text
    Network analysis is on the rise across scientific disciplines because of its ability to reveal complex, and often emergent, patterns and dynamics. Nonetheless, a growing concern in network analysis is the use of limited data for constructing networks. This concern is strikingly relevant to ecology and conservation biology, where network analysis is used to infer connectivity across landscapes. In this context, movement among patches is the crucial parameter for interpreting connectivity but because of the difficulty of collecting reliable movement data, most network analysis proceeds with only indirect information on movement across landscapes rather than using observed movement to construct networks. Statistical models developed for social networks provide promising alternatives for landscape network construction because they can leverage limited movement information to predict linkages. Using two mark-recapture datasets on individual movement and connectivity across landscapes, we test whether commonly used network constructions for interpreting connectivity can predict actual linkages and network structure, and we contrast these approaches to social network models. We find that currently applied network constructions for assessing connectivity consistently, and substantially, overpredict actual connectivity, resulting in considerable overestimation of metapopulation lifetime. Furthermore, social network models provide accurate predictions of network structure, and can do so with remarkably limited data on movement. Social network models offer a flexible and powerful way for not only understanding the factors influencing connectivity but also for providing more reliable estimates of connectivity and metapopulation persistence in the face of limited data
    corecore